سیستمهای طبقهبندی یادگیری، یا LCS، الگویی از روشهای یادگیری ماشین مبتنی بر قانون هستند که یک مولفه اکتشاف (برای مثال یک الگوریتم ژنتیک) را با یک مولفه یادگیری (انجام یادگیری نظارت شده، یادگیری تقویتی یا یادگیری نظارت نشده) ترکیب میکنند.[۲] سیستمهای طبقه بندی یادگیری به دنبال شناسایی مجموعه ای از قوانین وابسته به متن هستند که در مجموع، اطلاعات را به صورت تکه ای ذخیره میکنند و به کار میبرند تا محاسبات را انجام دهند (مانند مدلسازی رفتار،[۳] طبقهبندی،[۴][۵] داده کاوی،[۵]رگرسیون، تقریب تابع،[۶] یا استراتژی بازی). این روش اجازه میدهد تا فضاهای راه حل پیچیده به بخشهای کوچکتر و سادهتر تقسیم شوند.
1. Stalph, Patrick O.; Butz, Martin V. (2010-02-01). "JavaXCSF: The XCSF Learning Classifier System in Java". SIGEVOlution. 4 (3): 16–19. doi:10.1145/1731888.1731890. ISSN 1931-8499.
2. Urbanowicz, Ryan J.; Moore, Jason H. (2009-09-22). "Learning Classifier Systems: A Complete Introduction, Review, and Roadmap". Journal of Artificial Evolution and Applications (به انگلیسی). 2009: 1–25. doi:10.1155/2009/736398. ISSN 1687-6229.
3. Dorigo, Marco (1995). "Alecsys and the AutonoMouse: Learning to control a real robot by distributed classifier systems". Machine Learning (به انگلیسی). 19 (3): 209–240. doi:10.1007/BF00996270. ISSN 0885-6125.
4. Bernadó-Mansilla, Ester; Garrell-Guiu, Josep M. (2003-09-01). "Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks". Evolutionary Computation. 11 (3): 209–238. doi:10.1162/106365603322365289. ISSN 1063-6560. PMID 14558911.
5. Urbanowicz, Ryan J.; Moore, Jason H. (2015-04-03). "ExSTraCS 2.0: description and evaluation of a scalable learning classifier system". Evolutionary Intelligence (به انگلیسی). 8 (2–3): 89–116. doi:10.1007/s12065-015-0128-8. ISSN 1864-5909. PMC 4583133. PMID 26417393.
6. Butz, M. V.; Lanzi, P. L.; Wilson, S. W. (2008-06-01). "Function Approximation With XCS: Hyperellipsoidal Conditions, Recursive Least Squares, and Compaction". IEEE Transactions on Evolutionary Computation. 12 (3): 355–376. doi:10.1109/TEVC.2007.903551. ISSN 1089-778X.